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We investigate the effect of magnetic impurities on the local quasiparticle density of states in iron-based
superconductors. Employing the two-orbital model where 3d electron and hole conduction bands are hybrid-
izing with the localized f orbital of the impurity spin, we investigate how various symmetries of the super-
conducting gap and its nodal structure influence the quasiparticle excitations and impurity bound states. We
show that the bound states behave qualitatively different for each symmetry. Most importantly we find that the
impurity-induced bound states can be used to identify the nodal structure of the extended s-wave symmetry
�S�� that is actively discussed in ferropnictides.
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I. INTRODUCTION

The problem of magnetic impurities in a superconductor
has been extensively discussed in the literature.1–5 The mag-
netic impurity and its moment can interact with the conduc-
tion electrons of the metal in the normal or superconducting
state. In the former case this leads to the Kondo effect and a
resonance state at the Fermi level. In the latter case it is well
known that a single magnetic impurity doped into a super-
conductor produces a localized bound state within the quasi-
particle excitation gap.1 The spectrum is sensitive to the
symmetry of the order parameter and is therefore a powerful
tool to probe the pairing symmetry.

The discovery of new Fe-based superconductors6 with
distinct multiorbital band structure7–9 have opened a new ho-
rizon to high-temperature superconductivity. One of the most
significant questions for these materials is the symmetry of
the superconducting gap and the underlying Cooper-pairing
mechanism. The latter is believed to arise due to purely elec-
tronic mechanism and a variety of models have been inves-
tigated with various weak-coupling approaches within
random-phase-approximation10–12 and renormalization group
techniques.13,14 It was concluded that the fully gapped ex-
tended s-wave state with the � shift of the gap between
electron and hole Fermi-surface �FS� sheets is the most natu-
ral outcome of these theories. It is believed to be driven by
the interband spin fluctuations at the antiferromagnetic wave
vector �� ,�� in folded Brillouin zone �BZ� and it also com-
petes with the spin-density wave instability at the same wave
vector which leads to the columnar or striped AF state for
low doping.

However, despite intensive experimental efforts, the pair-
ing symmetry of this new class of superconducting materials
is not completely settled. Some experimental groups have
reported the fully gapped behavior,15–19 but some measure-
ments, in particular NMR relaxation and penetration depth
suggest existence of gap nodes.20–22 From the theoretical side
it has also been realized11,23 that the superconducting gap
structure may be nonuniversal in ferropnictides due to the
large intraband Coulomb repulsion. Its inclusion may force

the superconducting gap to develop a node which crosses
one of the Fermi surfaces. At the same time the symmetry of
the superconducting gap will, however, still remain extended
s-wave though higher harmonics are acquired. Moreover, in
some scenarios24,25 the superconducting gap even changes
from the extended s-wave toward either dx2−y2- or dxy-wave
symmetries depending on the slight variation in parameters.
Recently it has been found that isoelectronic substitution of
As by P in BaFe2�As1−xPx�2 changes the gap structure in Fe
pnictide compounds from nodeless to nodal.16 It seems that
whereas electron and hole doping lead to a fully gapped
state, isoelectronic doping �equivalent to chemical pressure�
leads to the presence of line nodes in the gap function.
Therefore it is desirable to investigate the magnetic impurity
effect in Fe pnictide compounds for different candidates of
gap symmetries. The resulting characteristics of the LDOS
which is sensitive to the nodal structure may provide a clue
to distinguish between the various proposed gap symmetries.
In previous investigations for FeAs compounds the effect of
nonmagnetic impurities on the quasiparticle spectrum in the
S� state26,27 has been studied. Magnetic impurity effects
have so far only been discussed for the single-band model
with dx2−y2 order parameter19 and for the two-band model for
a classical local moment.28 At the same time, it is known that
the local density of state �LDOS� around the magnetic impu-
rity can provide significant information on the local elec-
tronic structure in the unconventional superconductor.29 Note
also that the influence of nonmagnetic30,31 and magnetic32

impurities on the reduction in superconducting transition
temperature has been recently analyzed.

In this paper we investigate the effect of a single magnetic
impurity on the local quasiparticle excitations around the im-
purity site. We use a minimal two-band model for the elec-
tronic structure of Fe pnictides which leads to the
��0,0�-centered hole and M �� ,��-centered electron pock-
ets. In Sec. II the Anderson model with a strong Hubbard
repulsion for the localized f electron at the impurity site, and
a hybridization between conduction bands and localized state
will be introduced. We will treat this model in the infinite U
limit where a slave boson representation may be used similar
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to Ref. 19 where the Anderson impurity in the single-band
model with dx2−y2 order parameter has been studied. We then
calculate the LDOS and discuss the signatures of possible Fe
pnictide order parameter symmetry in its spectral and spatial
characteristics. This quantity is accessible in STM tunneling
spectroscopy.5 The numerical results for the various cases
will be discussed in Sec. III. Finally in Sec. IV we give a
summary of our results and a conclusion.

II. THEORETICAL MODEL

According to the band-structure calculations33 as well as
numerous angle-resolved photoemission spectroscopy
�ARPES� results34 the Fermi-surface topology of iron-based
superconductors consists of the small size circular hole and
elliptic electron Fermi-surface pockets centered around the �
and �� ,�� points of the folded BZ, respectively. The pockets
are nearly of the same size which results in the nesting prop-
erties of the electron and hole bands at the antiferromagnetic
wave vector, QAF, i.e., �k

e =−�k+QAF

h . Despite the fact that
there are two electron and two hole pockets it has been
argued13 that it is enough to consider only two of them �one
electron and one hole pocket� because the instabilities of the
two-band model are the same as in the four-band model.
Following this suggestion we consider two bands that are
given by diagonalized tight-binding expression including
hoppings up to the next nearest neighbors:

H = �
k��

�k�ck��
† ck�� + �

k�

�k�ck�↑
† c−k�↓

† + H.c.�

+ � f�
�

f�
† f� + �

k��

Vk��ck��
† f� + H.c.� + Uf↑

†f↑f↓
†f↓,

�1�

where ck��
† creates an electron with spin � in band � ��

=1,2 refer to the hole and electron bands, respectively� with
wave vector k= �kx ,ky�. The dispersion �k� is then given in
the tight-binding form35

�k1 = − 0.18 + 0.16�cos kx + cos ky� − 0.052 cos kx cos ky ,

�k2 = 0.68 + 0.38�cos kx + cos ky� − 0.8 cos
kx

2
cos

ky

2
. �2�

Here, �k1 dispersion yields the hole Fermi-surface pocket
around the � point and �k2 gives the elliptic electron Fermi-
surface pocket around the M = �� ,�� point, see Fig. 1. The
parameters have been chosen from the available fit to the
ARPES data36 �all in eV� and correspond to the hole doping
of about 10%. The f�

† operator creates the localized electron
at the impurity site at the origin and U is its on-site Coulomb
repulsion. Finally � f is the f-band position, Vk� is the hybrid-
ization energy between localized electron and the conduction
bands, and �k is the singlet superconducting gap function.
We choose values for � f and Vk� �Fig. 2� such that the f
orbital is almost filled �nf �1�.

Our model assumes the limit U→	 where doubly occu-
pied f states are excluded. This limit may be represented by

introducing the auxiliary boson b, with the constraint Q̃

=b†b+��f�
† f�=1.37 In the mean-field approximation �b

= �b�= �b†��, the total Hamiltonian including the constraint is
given by HMF+
�b2−1�. Here HMF is obtained as

HMF = �̂†�0�̂ + �
k

̂k
†�1�k�̂k + �̂k

†�2�̂ + H.c.� , �3�

where 
 is the Lagrange multiplier for enforcing the con-

straint. The Nambu spinors are denoted by ̂k
†

= �ck1↑
† ,c−k1↓ ,ck2↑

† ,c−k2↓�, and likewise �̂†= �f↑
† , f↓ , f↑

† , f↓�,
while the matrices �i are defined as

�0 = �̃ f�0 � �z,

�1�k� = �1 + �3

2
� ��k1�z + �k�x�

+
1 − �3

2
� ��k2�z + �k�x�� ,

�2�k� = �Ṽk1
1 + �3

2
+ Ṽk2

1 − �3

2
� � �z. �4�

Here �i are the Pauli matrices acting in spin space, �i are the
Pauli matrices in the orbital space, and �i � � j denotes a di-
rect product of the matrices operating on the four-
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FIG. 1. �Color online� Fermi surfaces of the two-band model
�thick curves� with different symmetry of the superconducting order
parameters �nodal lines represented by the dashed lines�. �a� Ex-
tended s-wave symmetry, starting from fully gapped �S��kx ,ky� 	or
�S1

��kx ,ky� with �=0
. With increase in the higher harmonics, �

=1,3 ,6 ,7 ,8 in �S1
��kx ,ky� this gap becomes more anisotropic and

finally has accidental nodes on the electronic pocket around the M
point. �b� refers to the other extended nodal s-wave gap symmetry
�S2

��kx ,ky� with two separate nodal lines: �S2
��kx ,ky� for �

=1.2; ��=0.15 and �=1.17; ��=0.08�. �c� and �d� show dx2−y2

and dxy gap symmetries with symmetry enforced nodes.
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dimensional Nambu space. Furthermore �̃ f = �� f +
� /2 and

V̄k�=bVk� are effective hybridization and energy position of
the impurity f level, respectively.

The LDOS near the magnetic impurity is obtained from
analytic continuation i�n→E+ i0+ according to

Nc�E,r� = −
1

�
Im	G11

c �r,r,�n� + G33
c �r,r,�n�
 , �5�

where �n=�T�2n+1� is the Matsubara frequency and
Gc�r ,r� ,�n� is a Fourier transformation of the matrix of the
conduction electrons Green’s function.

The matrix Green’s functions are defined as the
imaginary-time ordered average

Gc�k,k�;�� = − �T�̂k���̂k�
† �0�� ,

Gfc�k;�� = − �T��̂���̂k
†�0�� ,

Gcf�k,�� = − �T�̂k����̂†�0�� ,

Gf��� = − �T��̂����̂†�0�� , �6�

where G���=T��n
G��n�e−i�n�. At low-temperature regime

T��n
�¯ �→ −1

� Im�0
D�d�limi�→�+i0+�¯ �, where D� is band-

width of conduction band �. Using the standard equations of
motion method, one can show that

	i�n − �1�k�
Gc�k,k�,�n� = �k,k� + �2�k�Gfc�k�,�n� , �7�

�i�n − �0�Gfc�k,�n� = �
k�

�2�k��Gc�k�,k,�n� �8�

and

�i�n − �0�Gf��n� = 1 + �
k

�2�k�Gcf�k,�n� , �9�

	i�n − �1�k�
Gcf�k,�n� = �2�k�Gf��n� . �10�

Now using the equations above we find the full f Green’s
function

Gf��n� =
1

�i�n − �0 − � f�
, �11�

where the f self-energy is given by

� f = �
k

�2�k�G0
c�k,�n��2�k�

=
1 + �3

2
� �

k
Ṽ1k

2 �− i�n − �k1�z + �k1�x

�n
2 + �k1

2 + �k1
2 

+ �1 → 2; �3 → − �3� , �12�

and the conduction electrons Green’s function can be ob-
tained by19

Gc�k,k�,�n� = G0
c�k,�n�	�k,k� + t�k,k�;�n�G0

c�k�,�n�
 . �13�

Here, G0
c�k ,�n�= 	i�n−�1�k�
−1 is the unperturbed Green’s

function of the conduction electrons, and the t-matrix is
given by

t�k,k�;�n� = �2�k�Gf��n��2�k�� . �14�

In the following, the k dependence of the hybridization
energy is neglected, i.e., we set Vk�=V�, which yields that
�2�k�→�2. Minimization of the ground-state energy with
respect to b and the Lagrange multiplier 
 leads to the mean-
field equations


b2 = �
k��

Ṽk�Wk��
fc , �

�

n�
f + b2 = 1, �15�

where the expectation values are defined by Wk��
fc = �f�

†ck���
and n�

f = �f�
† f��. Therefore from Eq. �15� we show easily that


b2 = lim
�→0

�
k

�Ṽ1	G11
fc�k,�� − G22

fc�k,��


+ Ṽ2	G33
fc�k,�� − G44

fc�k,��
� �16�

and

b2 =
1

2
lim
�→0

	G11
f ��� − G22

f ��� + G33
f ��� − G44

f ���
 . �17�

By solving the set of Eqs. �11�–�17�, numerically one can
find the values of �̃ f and b, which are used as an input for the
t-matrix.

III. NUMERICAL RESULTS

We now discuss the results of numerical calculations for
the central quantity Nc�E ,r� based on the previous analysis
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FIG. 2. �Color online� Calculated LDOS for the superconduct-
ing regime with various superconducting order parameters: �a� S�:
�S��kx ,ky� and �b�–�f� S1

�: �S1
��kx ,ky� �with �=1,3 ,6 ,7 ,8, respec-

tively�; for � f =−�0 /3, V1=V2=0 �solid�, V1=V2=0.5�0 �dashed�,
and V1=V2=�0 �dotted-dashed�.
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	obtained from Eqs. �11�–�17�
. In this section we focus on
the energy and also spatial dependence of the LDOS 	Eq.
�5�
 at T=0 for various gap symmetries. As the main candi-
dates we include different types of the extended s-wave gaps
which are fully gapped on the hole pocket but possibly have
accidental nodes on the electron pockets due to higher har-
monics contributions. For completeness, we also include
d-wave gap functions which have nodes on both electron and
hole pockets. The latter, however, are not supported by
ARPES results15,38,39 which suggest nodeless gaps on the
hole pockets.

We begin our discussion with the anisotropic nodeless
extended s-wave pairing function �S��. The Fermi-surface
illustration with respective node positions indicated by
dashed lines is shown in Fig. 1�a�. This gap function is given
by

�S��kx,ky� =
�0

2
�cos kx + cos ky� �18�

and we show the result for the LDOS at the origin �rx ,ry�
= �0,0� in Fig. 2�a� for �0=6 meV and � f =−�0 /3, with dif-
ferent hybridization energies. While the overall structure of
the spectrum stays the same the increased hybridization leads
to more pronounced bound-state peaks within the gap. We
observe that an increase in the hybridization energy, V�,
causes the position of peaks to move to higher absolute val-
ues of E, and a corresponding increase in their line width. By
increasing the absolute value of the impurity energy level, � f,
the bound state also moves to higher absolute values of E.
Notice that by restricting to the first-order perturbation
theory in effective hybridization �Born approximation�, we
did not find a dramatic change in our results, for the chosen
values of V�.

Furthermore, due to the different size of electron and hole
pockets the onset of the continuum around �E /�� is split into
a double peak structure. For E�0 the lower and upper peaks
correspond to hole and electron pockets, respectively.

The addition of higher harmonics in the S1
� gap function

allows to tune the modulus of the gaps on hole and electron
pockets independently while keeping the basic property of
having an opposite sign. As seen from Fig. 1�a� this is
equivalent shifting the nodal line position closer to the elec-
tron pockets and increasing higher harmonic amplitude con-
tinuously one eventually produces an accidental node on this
sheet. This gap function is given by

�S1
��kx,ky� = �0�1

2
�cos kx + cos ky� + � cos

kx

2
cos

ky

2
� �19�

and the result for the LDOS is plotted in Figs. 2�b�–2�f� for
different � parameters. At the symmetry points one has
��0,0�=�0�1+�� and ����,���=−�0. Then ���0,0��− �����,����=�
which also means that the difference between the absolute
values of the gaps on �-centered hole pockets and
M-centered electron pockets increases with �. This can be
clearly seen in Fig. 2�b� ��=1� where the peak at larger
�E /�0� originating from the hole pocket is pushed to larger
energies and for �=3 is no longer visible on the scale of Fig.
2�c�. On the other hand the peak due to gap maximum on the

electron pocket stays fixed around �E /�0��1 while � grows.
At the same time a deep minimum and finally an accidental
node of the gap develops on the electron pocket and leads to
the increase in the low-energy LDOS in Figs. 2�b�–2�f�. This
type of low-energy DOS may explain power laws for NMR
relaxation rate and penetration depth observed in some
pnictides.20–22 On the other hand the position of bound-state
peaks caused by the magnetic impurity is apparently insen-
sitive to the variation in � and the change in the underlying
quasiparticle spectrum.

However, the S1
� gap function is not unique and acciden-

tal nodes on the electron pocket may be obtained with a
different type of modification with higher harmonics. This
leads us to extended S2

�-wave pairing described by another
gap function

�S2
��kx,ky� = �0	0.5�cos kx + cos ky�

+ � cos kx cos ky + �� cos 4kx cos 4ky
 .

�20�

Its nodal structure is shown in Fig. 1�b�. Now there are two
nodal lines, one located between the pockets which leads to
an anisotropic but fully gapped order parameter on the hole
pockets. The other accidental nodal line centered around the
M point cuts the electron pocket and leads to a finite low-
energy quasiparticle DOS as seen in the results of the Figs.
3�a� and 3�b� for �=1.2; ��=0.15 and �=1.17; ��=0.08,
respectively. The bound states due to impurity scattering ap-
pear again as pairs at similar energies as for the S1

� case.
Finally for completeness we also consider two simple an-

isotropic d-wave order parameters, namely, dx2−y2 	Fig. 1�c�

and dxy 	Fig. 1�d�
 which have symmetry enforced gap
nodes. This leads to sign change in the gap function on the
same FS pocket rather than between them. We consider the
two candidates

�dx2−y2�kx,ky� =
�0

2
�cos kx − cos ky� ,

�dxy
�kx,ky� = �0 sin kx sin ky . �21�

In each case the nodal lines cross both Fermi-surface pockets
in contrast to the extended s-wave model. We note that cur-
rent ARPES experiments have shown a fully gapped hole
pocket15,38,39 though no experiments yet are available for
P-based systems.

�1.5 �1 �0.5 0 10.5 1.5

1

2

3

4

E��

N
c �

E
,r
�

0� S2
� � Α� 1.17; Α’� 0.08

�1.5 �1 �0.5 0 10.5 1.5

1

2

3

4

E��

N
c �

E
,r
�

0� S2
� � Α� 1.2; Α’� 0.15

(b)(a)

FIG. 3. �Color online� LDOS for the superconducting state with
various order parameters: �S2

��kx ,ky� for ��=1.2; ��=0.15� and
��=1.17; ��=0.08�; for � f =−�0 /3, V1=V2=0 �solid�, V1=V2

=0.5�0 �dashed�, and V1=V2=�0 �dotted-dashed�.
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The background of the LDOS, as shown in Fig. 4, is given
by the typical V shape of a d-wave order parameter. On top
of it a single-bound-state peak due to the impurity scattering
appears below the Fermi level. This is distinctly different
from the extended s-wave case where always two bound
states below and above the Fermi level appear symmetri-
cally. A partly similar observation for a dx2−y2 order param-
eter with only a single sheet FS intended for cuprates was
made in Ref. 19. There one bound-state peak was found for
�rx ,ry� along the antinodal direction and two peaks for the
nodal direction. In our present d-wave case considered for
the two-sheet FS of Fe pnictides the single peak appears for
both nodal and antinodal directions.

For clarifying of the position dependence of resonance
peaks, Fig. 5 displays the spatial variation in the LDOS
Nc�� ,rx ,ry� around the magnetic impurity at the resonance
energies, �a� �=�r and �b� �=−�r, for S� gap symmetry
with �0=6 meV, � f =−�0 /3, and V1=V2=�0. It shows that
the maximum amplitude of the LDOS appears close to the
impurity site and decays nonmonotonically further away
from the impurity site. While the LDOS at �r is rather iso-
tropic the peak for −�r shows a significant anisotropic LDOS
in the plane. This anisotropy does not seem to result from
special FeAs Fermi-surface feature since it is also observed
in the single parabolic band case in Ref. 19.

IV. SUMMARY

We have investigated the effect of magnetic impurity scat-
tering in the FeAs pnictide superconductors. We used a

simple two-band model Fermi surface and calculated LDOS
spectral and spatial dependence close to the impurity site for
two types of extended s-wave superconducting order param-
eters with interband sign change and for two d-wave order
parameters with intraband sign change. In the former two
impurity bound states appear symmetrically around the
Fermi energy at positions ��r. The modulus of the bound-
state energy increases with hybridization strength V and im-
purity orbital energy � f monotonically. In the latter case only
the lower bound state pole at −�r appears in the LDOS for
any direction from the impurity site. The background varia-
tion in the LDOS is determined by the characteristics of the
superconducting gap on the two FS sheets. The extended
s-wave order parameters may be tuned such that fully gapped
behavior on the central hole sheet and accidental node struc-
ture on the zone boundary hole sheets appear naturally. In
this case the spatial dependence of the LDOS for the two
bound-state peaks shows significant differences in the degree
of spatial anisotropy. We conclude that the observation of
two bound-state peaks in tunneling experiments would be an
important support for the extended s-wave gap function with
interband sign change. The fine structure of the background
continuum LDOS may give more detailed information on the
type of the accidental nodal structure.

ACKNOWLEDGMENTS

I. E. acknowledges support from RMES �2.1.3199� and
NSF DMR �No. 0645461�.

1 H. Shiba, Prog. Theor. Phys. 40, 435 �1968�.
2 M. Matsumoto and M. Koga, J. Phys. Soc. Jpn. 71S, 231 �2002�.
3 O. Sakai, Y. Shimizu, K. Satori, and H. Shiba, J. Phys. Soc. Jpn.

62, 3181 �1993�.
4 K. Satori, H. Shiba, O. Sakai, and Y. Shimizu, J. Phys. Soc. Jpn.

61, 3239 �1992�.
5 A. V. Balatsky, I. Vekhter, and J.-X. Zhu, Rev. Mod. Phys. 78,

373 �2006�.
6 Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am.

Chem. Soc. 130, 3296 �2008�.
7 E. M. Brüning, C. Krellner, M. Baenitz, A. Jesche, F. Steglich,

and C. Geibel, Phys. Rev. Lett. 101, 117206 �2008�.

8 J. Zhao, Q. Huang, C. de la Cruz, S. Li, J. W. Lynn, Y. Chen, M.
A. Green, G. F. Chen, G. Li, Z. C. Li, J. L. Luo, N. L. Wang, and
P. Dai, Nature Mater. 7, 953 �2008�.

9 L. Pourovskii, V. Vildosola, S. Biermann, and A. Georges, EPL
84, 37006 �2008�.

10 K. Kuroki, S. Onari, R. Arita, H. Usui, Y. Tanaka, H. Kontani,
and H. Aoki, Phys. Rev. Lett. 101, 087004 �2008�.

11 T. A. Maier, S. Graser, D. J. Scalapino, and P. J. Hirschfeld,
Phys. Rev. B 79, 224510 �2009�.

12 J. Zhang, R. Sknepnek, R. M. Fernandes, and J. Schmalian,
Phys. Rev. B 79, 220502�R� �2009�.

13 A. V. Chubukov, D. V. Efremov, and I. Eremin, Phys. Rev. B 78,

�1.5 �1 �0.5 0 10.5 1.5

1

2

3

E��

N
c �

E
,r
�

0�

dx2�y2

�1.5 �1 �0.5 0 10.5 1.5

1

2

3

E��

N
c �

E
,r
�

0�

dxy

(b)(a)

FIG. 4. �Color online� LDOS for the superconducting regime
with order parameters: �a� dx2−y2 and �b� dxy; for � f =−�0 /3, V1

=V2=0 �solid�, V1=V2=0.5�0 �dashed�, and V1=V2=�0

�dotted-dashed�. FIG. 5. �Color online� Density plot of the spatial distribution of
the LDOS for the superconducting regime with extended s-wave
order parameter, �S��kx ,ky�, for � f =−�0 /3, V1=V2=�0, and �a�
�=�r, �b� �=−�r. 	Maximum intensity is at �rx ,ry� � �0,0�
.

MAGNETIC IMPURITY RESONANCE STATES AND… PHYSICAL REVIEW B 81, 014524 �2010�

014524-5



134512 �2008�.
14 H. Zhai, Fa Wang, and Dung-Hai Lee, Phys. Rev. B 80, 064517

�2009�.
15 H. Luetkens, H.-H. Klauss, M. Kraken, F. J. Litterst, T. Dell-

mann, R. Klingeler, C. Hess, R. Khasanov, A. Amato, C. Baines,
M. Kosmala, O. J. Schumann, M. Braden, J. Hamann-Borrero,
N. Leps, A. Kondrat, G. Behr, J. Werner, and B. Büchner, Na-
ture Mater. 8, 305 �2009�.

16 K. Hashimoto, M. Yamashita, S. Kasahara, Y. Senshu, N. Na-
kata, S. Tonegawa, K. Ikada, A. Serafin, A. Carrington, T.
Terashima, H. Ikeda, T. Shibauchi, and Y. Matsuda,
arXiv:0907.4399 �unpublished�.

17 L. Malone, J. D. Fletcher, A. Serafin, A. Carrington, N. D. Zhi-
gadlo, Z. Bukowski, S. Katrych, and J. Karpinski, Phys. Rev. B
79, 140501�R� �2009�.

18 R. Khasanov, H. Luetkens, A. Amato, H. H. Klauss, Z. A. Ren,
J. Yang, W. Lu, and Z. X. Zhao, Phys. Rev. B 78, 092506
�2008�.

19 G. M. Zhang, H. Hu, and L. Yu, Phys. Rev. Lett. 86, 704 �2001�.
20 Y. Nakai, K. Ishida, Y. Kamihara, M. Hirano, and H. Hosono, J.

Phys. Soc. Jpn. 77, 073701 �2008�.
21 L. Shan, Y. Wang, X. Zhu, G. Mu, L. Fang, C. Ren, and H. Wen,

EPL 83, 57004 �2008�.
22 M. Gang, X.-Y. Zhu, L. Fand, L. Shan, C. Ren, and H.-H. Wen,

Chin. Phys. Lett. 25, 2221 �2008�.
23 A. V. Chubukov, M. G. Vavilov, and A. B. Vorontsov, Phys. Rev.

B 80, 140515�R� �2009�.
24 A. Moreo, M. Daghofer, A. Nicholson, and E. Dagotto, Phys.

Rev. B 80, 104507 �2009�.
25 K. Kuroki, H. Usui, S. Onari, R. Arita, and H. Aoki, Phys. Rev.

B 79, 224511 �2009�.
26 M. Matsumoto, M. Koga, and H. Kusunose, J. Phys. Soc. Jpn.

78, 084718 �2009�.
27 D. Zhang, T. Zhou, and C. S. Ting, arXiv:0904.3708 �unpub-

lished�.
28 W. F. Tsai, Y. Y. Zhang, C. Fang, and J. Hu, Phys. Rev. B 80,

064513 �2009�.

29 E. W. Hudson, K. M. Lang, V. Madhavan, S. H. Pan, H. Eisaki,
S. Uchida, and J. C. Davis, Nature �London� 411, 920 �2001�.

30 Y. Senga and H. Kontani, J. Phys. Soc. Jpn. 77, 113710 �2008�.
31 S. Onari and H. Kontani, Phys. Rev. Lett. 103, 177001 �2009�.
32 J. Li and Y. Wang, EPL 88, 17009 �2009�.
33 D. J. Singh and M.-H. Du, Phys. Rev. Lett. 100, 237003 �2008�;

L. Boeri, O. V. Dolgov, and A. A. Golubov, ibid. 101, 026403
�2008�; I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du,
ibid. 101, 057003 �2008�.

34 C. Liu, G. D. Samolyuk, Y. Lee, N. Ni, T. Kondo, A. F.
Santander-Syro, S. L. Bud’ko, J. L. McChesney, E. Rotenberg,
T. Valla, A. V. Fedorov, P. C. Canfield, B. N. Harmon, and A.
Kaminski, Phys. Rev. Lett. 101, 177005 �2008�; D. V. Evtush-
insky, D. S. Inosov, V. B. Zabolotnyy, A. Koitzsch, M. Knupfer,
B. Büchner, M. S. Viazovska, G. L. Sun, V. Hinkov, A. V. Boris,
C. T. Lin, B. Keimer, A. Varykhalov, A. A. Kordyuk, and S. V.
Borisenko, Phys. Rev. B 79, 054517 �2009�; D. Hsieh, Y. Xia,
L. Wray, D. Qian, K. Gomes, A. Yazdani, G. F. Chen, J. L. Luo,
N. L. Wang, and M. Z. Hasan, arXiv:0812.2289 �unpublished�;
H. Ding, K. Nakayama, P. Richard, S. Souma, T. Sato, T. Taka-
hashi, M. Neupane, Y.-M. Xu, Z. H. Pan, A. V. Federov, Z.
Wang, X. Dai, Z. Fang, G. F. Chen, J. L. Luo, and N. L. Wang,
arXiv:0812.0534 �unpublished�.

35 M. M. Korshunov and I. Eremin, Phys. Rev. B 78, 140509�R�
�2008�.

36 K. Nakayama, T. Sato, P. Richard, T. Kawahara, Y. Sekiba, T.
Qian, G. F. Chen, J. L. Luo, N. L. Wang, H. Ding, and T. Taka-
hashi, arXiv:0907.0763 �unpublished�.

37 P. Coleman, Phys. Rev. B 29, 3035 �1984�.
38 H. Ding, P. Richard, K. Nakayama, K. Sugawara, T. Arakane, Y.

Sekiba, A. Takayama, S. Souma, T. Sato, T. Takahashi, Z. Wang,
X. Dai, Z. Fang, G. F. Chen, J. L. Luo, and N. L. Wang, EPL 83,
47001 �2008�.

39 T. Kondo, A. F. Santander-Syro, O. Copie, C. Liu, M. E.
Tillman, E. D. Mun, J. Schmalian, S. L. Budko, M. A. Tanatar,
P. C. Canfield, and A. Kaminski, Phys. Rev. Lett. 101, 147003
�2008�.

AKBARI, EREMIN, AND THALMEIER PHYSICAL REVIEW B 81, 014524 �2010�

014524-6


